

Armorcoat® 4, 7 & 8 Mil Clear

 \Box AC 4 mil Clear $\ \boxtimes$ AC 7 mil Clear $\ \Box$ AC 8 mil Clear

	AC 4 Mill 4mm Single clear D -^" « • i Û^ÌÀ>}i	4/12/4mm louble clear Double	4mm Single clear -^" « • i Û ^ Ì À > } i	4/12/4mm Double clear Double vitrage	4mm Single dear -^" « • i Û^ÌÀ>}	4/12/4mm Double clear Double vitrage	
	88	80					
Solar Energy							
Infrared rejection @780 à 2500 nm %	24						
Ultraviolet light blocked @300 to 380 nm %	€ ™ ™						
Fade control UV Tdw-ISO @300 to 700 nm %*							*
Fade reduction %							œ~îÀž•i `i `jVœ•œÀ>Ì^œ~
Physical Properties							Caractéristiques Physiques
/~œ"É/-ù"® œ"°Ì^VŽ~iÃÃÉ	ÛiÀ>••						/~œ" É /-ê"® «>^ÃÃiÕÀ ~œ"^~>•i É
/i~Ã^•i ÃÌÀi~}Ì ‡ Ž}ÉV"Ô							,jÃ^ÃÌ>~Vi D •> ÌÀ>VÌ^œ~ ‡ Ž}
Elongation							•œ~}>Ì^œ~
*ii• Ãit̀Àì ‡ }É∨"							,jÃ^ÃÌ>~Vi >Õ «i•>}i ‡ }ÉV"
9^i•` ÃÌÀi~}Ì ‡ Ž}ÉV"Ô ->Ì x	®						, jÃ^ÃÌ>~Vi D •> ÌÀ>VÌ^œ~ ‡ Ž}ÉV"Ô -j•œ
Ài>Ž ÃÌÀi~}Ì ţ Ž}ÉV"							,jÃ^ÃÌ>~Vi D •> ÀÕ«ÌÕÀi ‡ ŽÌ
/i>À ÃÌÀi~)Ì ‡ Ž} - À>Ûiî							,jÃ^ÃÌ>~Vị D •> `jV^ÀÕÀi_`i À>Û
*Õ~VÌÕÃÀÌÀi~}̇Ž}						1. #	$,j\tilde{A}^{\tilde{A}}\tilde{A}\tilde{I}>^{\sim}ViD \rightarrow *i\tilde{A}vj\tilde{A}f\hat{o}$ "951
						>VIiO	À `i `jVœ•œÀ>Ì^œ~ 16 /`܇ -" JÎää D Çää ~" ¯

Infrared rejection = 1 - average unweighted transmittance using ASTM E 903. "Tdw-ISO is the percentage of transmitted light that causes fading. A lower number means more protection against fading. "Le Tdw-ISO représente le potentiel de dégâts de décoloration dus à la lumière transmise. Plus le chiffre est faible, meilleure est la protection

,•• -œ•>À >À 'Û^^"œÛ w•*à "iil V•>ÃðwV>l°œ° ‡-£j°ā-liĀlĀ>VV lœ - £înôl® >* V•>Ãà £-liĀlĀ>VV lœ • * ™ • ‡x㣮 '/œÖĀ •iĀ w•*à -œ•>À >À 'Āœ°l V•>ÃÃÃ, ‡Â£] 'ā -iĀĀ>^à Āi•œ° - £înôl® >* ^ð µÔi £-iĀĀ>^Ā Āi•œ° * ™ • ‡x㣮°

oeˡ ÌoeÌÀiÀ

[&]quot; œΑ':l>'•à œ⁻ >Ü>'•>L•i Ä>vilÞ liĀl⁻') >¬' liĀl Ài«œÀlĀ] Vœ⁻ÃÕ•l ÜÜܰÜ•>À}>À'°Vœ° œÀ ˆ-μÕ°Ài ܰl... ÞœÕ " •œÕA «•Õà `i `jl>^•à ÃÕA •iĀ liĀlĀ `i ĀjVÕĀʾlj `-뜬L•iĀ il '½iĀĀ>^ A>««œAlĀ] Vœ¬ÃÕ•liÀ ÜÜܰÜ•>À}>Å'°

Performance results are center of glass generated on Saint-Gobain Planilux 4 mm clear using EN410 and Lawrence

